Response to Sanborn Head Technical Review Report

Following our meetings and discussions regarding Sanborn Head's technical review of the Smith & Burgess report, we wish to issue a response to each of the items posted in the final technical review report. For simplicity, each item will be discussed in the order that it appears in Sanborn Head's report, in tabular format.

#	Page	Sanborn Head Remark	Smith & Burgess Response
1	2	There is a lack of a proper test case for comparison.	While there are several test cases publicly available for LNG spills (e.g. Maplin Sands 1980, Burro 1980, Coyote 1981, Falcon 1987 which are all spills into water), the technical data available for LNG releases over soil, let alone jet releases of LNG, is lacking. Evaluation of the accuracy of the models was done on a qualitative basis, such as by viewing videos of other cryogenic releases (a proprietary video of a high pressure jet release of cryogenic ammonia appeared similar) and also looking at slice planes of pressure, temperature, velocity, and other variables to ensure vaporization and buoyancy were behaving as expected. Our forensics expert also looked at the models and they appeared similar to what he has observed in industry with other cryogenic fluid releases.
2	2-3	Based on our process understanding, the pipe in question that runs under Wilson Street does not operate at the assumed 800 psig pressure. It operates instead at a pressure of about 110 psig A guillotine failure at the high pressure pump house would by design trigger an automatic shutdown of LNG pumping from the storage tanks	We did not have access to PFDs, P&IDs, material and energy balances, or other standard information to definitively identify the normal and maximum operating pressure of each pipe in the process. We received drawings of the LNG tanks which included pipe sizes and typical service, as well as plot plans of the main facility and LNG storage area. We also received previous studies that were done by ioMosaic and CH-IV that had pipe size and some pressure information along with the Jim Davis testimony. Without knowing the location of the high pressure pumps or anything further with the process, we went with the 800 psig cited in both the Jim Davis testimony and the CH-IV study. We also did not have information on safety systems such as automatic shutdown. However, it should be

April 1, 2016 Response to Sanborn Head Technical Review Report

#	Page	Sanborn Head Remark	Smith & Burgess Response
			noted that no safety system in industry is 100% fail- safe and there is a possibility of safety systems not working (many industry incidents in recent history have involved failures of at least 2 different protective safeguards). For the purposes of a worst case scenario model, this pressure could be sustained for a long period of time, particularly if there is no intervention and the safety systems fail to activate for any reason. That being said, we do not know what the actual piping size is at the vaporizers since we now know it is not the piping near Wilson street. If the piping at the vaporizers is smaller, then that will also substantially decrease the maximum flow rate during a guillotine pipe break. As noted in the technical review, we agree that additional simulations should rely on facility specific information to definitively identify appropriate piping pressures, piping locations, and safeguards in place to shut off flow, as well as if to consider safeguards and include their response time in the simulations.
3	3	Similarly, there are also various mechanisms in place that are designed to contain and limit the release of LNG from storage tank failures.	Again, we did not have information on safety systems such as the internal shut off valves mentioned by Sanborn Head. We agree with the recommendation that experts familiar with the Hopkinton facility safety systems be consulted to determine worst-case scenarios.
4	4	In these cases, Luketa-Hanlin et al. (2007) suggest that the liquid phase is difficult to model in CFD simulations The Smith & Burgess report does not provide details on the procedure used to model two- phase flow, but if the liquid phase is assumed to be distributed throughout the ground-based grid cell layer, the behavior of the liquid pool may be incorrectly modeled.	There are CFD models that are actively used in industry today for cryogenic applications. GexCon's FLACS CFD software, for example, is approved by FERC for LNG spill and dispersion modeling and has gone through experimental validation. Likewise, CD-Adapco presented us with an example Star- CCM+ model of a cryogenic helium tank with vaporization due to heat intrusion that used a Volume of Fluid (VOF) model. Our model of the cryogenic LNG spill likewise used a VOF model to capture the liquid to gas phase transition appropriately. CD-Adapco spends extensive time and resources validating their software through experimental comparison. If Luketa-Hanlin had a difficult time modeling liquid and gas phases in CFD simulations, they probably were not using the right type of CFD model.
5	4	The potential resistance to vapor transport caused by forested areas	We agree that inclusion of forests as semi-porous elements would have been desirable in the CFD

April 1, 2016

Response to Sanborn Head Technical Review Report

#	Page	Sanborn Head Remark	Smith & Burgess Response
		in the near vicinity of the Eversource	model. While we were successful in using these
		terminal is not explicitly considered.	elements and specifying viscous and inertial
		Smith & Burgess addresses this	resistances in the Star-CCM+ steady state solver,
		resistance through specification of	the software unfortunately had an incompatibility
		surface roughness lengths that will	with these elements between the selected mesh
		affect the way in which wind speed	type (hexahedral trimmer mesh – per region
		increases with height in the	meshing) and the unsteady state simulator with the
		atmosphere, but because cold	small time steps that are required to develop the
		natural gas vapor stays near the	LNG jet plume. After making every attempt at
		ground (until it mixes with enough	trying to include these elements in the model and
		air), the flow around individual trees	not having any success, we reported the problem
		can potentially slow the progress of	to CD-Adapco and they also could not provide an
		vapor plumes and introduce	answer for a workaround. They acknowledged an
		additional turbulence/dispersion.	issue with their software in regards to the mesh.
		Other CFD modelers (e.g., Zeleti et	We have been informed that they are planning on
		al., 2014) have employed semi-	fixing this issue at some point in the future, but this
		porous elements in near-ground	likely will not be fixed within the next year.
		locations to simulate transport	Semi-porous elements work well in the FLACS CFD
		directly through forested areas. We	software, and also work in the ANSYS CFX CFD
		recommend investigation of this	software. It is unknown how well ANSYS CFX can
		method should further CFD	handle topography in combination with semi-
		simulations be undertaken.	porous elements. In contacting one of their
			engineers to evaluate the suitability of their
			software to handle topography, they unfortunately
			could not provide us with a working example. We
			would therefore be hesitant to recommend this
			software without having confirmation that their
			software can use topography, semi-porous
			elements, hexahedral elements, and an unsteady
			state solver simultaneously. As for FLACS, their
			software currently is unable to handle topography,
			so unfortunately there may not be an ideal
			software available to simulate both topography
			and semi-porous elements simultaneously.
			The 2014 Zeleti CFD reference, while it describes
			what would be expected in modeling semi-porous
			elements in CFD models, unfortunately does not
			state what software was used as well as if it was a
			steady or unsteady simulation. The pictures also
			show flat terrain, which could have been easily
			done in FLACS.
			In conclusion, we are left with representing the
			forests in terms of surface roughness or using a
			model with the semi-permeable elements but
			without topography until a better working solution
			can be found.

April 1, 2016

Response to	Sanborn	Head	Technical	Review	Report

#	Page	Sanborn Head Remark	Smith & Burgess Response
6	4	Meteorological conditions are	It is true that the textbook reference on Pasquill
		inconsistently applied. Specifically,	class F states that it occurs at night under stable
		stable atmospheric conditions are	conditions. However, it is important to keep in
		assumed in conjunction with solar	mind that Class F is an approximation of turbulence
		heating and an elevated ground	conditions that are normally observed during the
		temperature. Stable atmospheres	combined solar and weather conditions. As such, it
		typically occur during nighttime	is possible to have higher or lower turbulence
		periods, and solar heating and	values than what is listed for the class. NFPA 59A
		elevated ground temperatures occur	and 49 CFR 193 only state that Class F should be
		only during the daytime. Resolving	used for the 2 m/s wind speed, but these codes
		this inconsistency in either direction	never state whether to include or not to include
		will serve to decrease the extent of	solar radiation in the models. Since we modeled a
		vapor impacts. If nighttime	single worst case scenario for 2 wind speeds (and
		conditions are assumed and the	the lower one only says exclude the worst 10%), we
		solar flux and elevated ground	chose a solar radiation that would be considered
		transfer to the LNC is reduced and	average for the day to correspond with the average
		cold vanor emissions are generated	weather turbulence data (such as that from the
		at a lower rate. If daytime conditions	NASA paper cited in the report) you will find the
		are assumed and the solar flux and	turbulence values have a lot of scatter around what
		elevated ground temperature	it is predicted to be under the particular weather
		assumptions are maintained	condition These conditions are therefore
		unstable atmospheric conditions	theoretically possible and would be consistent with
		should be assumed. which will	being a worst case scenario.
		increase the rate of mixing between	
		the air and cold vapor.	
7	4-5	The Smith & Burgess report does not	We disagree with several of the assertions being
		indicate whether the heat transfer	made here.
		characteristics of the ground were	First, Sanborn Head assumed we kept the ground
		considered. Subsequent information	surface at a constant temperature, but this was
		from Smith & Burgess indicates	never the case in the model. In the model, all
		potentially significant errors in the	grounds were modeled as adiabatic (meaning no
		way in which heat transfer to the	heat transfer to or from the ground), with the
		LNG was modeled. The rate at which	exception of heating from the sun (which was
		cold vapor is generated is largely	varied on different surfaces depending on a rough
		controlled by heat conduction from	estimate of shading from vegetation). This means
		the ground to the cold (-260°F) LNG.	that only the sun is heating the LNG on the ground
		he kept at a constant tomporature	Second they suggested using an independent
		the rate of heat transfer, and hence	model (again from Luketa Hanlin) outside of CED to
		ING holling will be overestimated	nedict nool formation and vanor generation from
		probably by a considerable degree as	ING releases While this may be accentable in some
		the simulations proceed in time As	cases, such a simplification is dangerous and can
		an example. Luketa-Hanlin et al	lead to highly erroneous results when applied to
		(2007) suggest an independent	dissimilar scenarios. The weakness of such models
		model outside of the CFD	outside of CFD is that the physics are generally not
		environment be used to predict the	well defined and they depend entirely upon

April 1, 2016

Response to	Sanborn	Head	Technical	Review	Report

#	Page	Sanborn Head Remark	Smith & Burgess Response
		pool formation and cold vapor	empirical data. Ideally, the scenario modeled
		generation from the LNG release,	should be comparable to the application range of
		and the predicted mass emission	empirical data, but it will not be comparable when
		rates of cold vapor be used as	dealing with different physics regimes (e.g.
		boundary condition inputs to the	turbulent jets versus steady spills of LNG). Reading
		bottom (ground surface) layer of the	the abstract to Luketa-Hanlin's publication, they
		CFD simulations.	mentioned Burro, Coyote, and Falcon LNG tests.
			These tests were for spills of LNG at low to
			moderate release rates ranging between 1-30
			m ³ /minute and were released directly onto water.
			Without having full access to the article, I would
			venture to guess that the model they are
			suggesting is likewise within the same ballpark. The
			Hopkinton scenarios were modeled with a much
			higher release rate. The release rate is so high that
			it comes out as a highly turbulent jet that mixes
			very rapidly with the ambient air. This
			phenomenon is not modeled well outside of CFD
			since CFD is required to model turbulence eddies.
			It is highly important to model the turbulence
			eddies the lead to LNG and air mixing heat transfer
			with jet releases.
			As for the source of the heat transfer to vaporize
			the LNG, this actually predominantly comes from
			the rapid mixing of the LNG with the air. Sanborn
			Head asserted that running a DEGADIS SOURCE5
			model of the LNG release resulted in a large pool
			forming and filling in the containment area.
			However, this again comes back to the applicability
			of the model being used. First, DEGADIS is not a CFD
			model and does not model turbulence. In fact, it
			doesn't even model heat transfer from the air.
			PHMSA has stated that DEGADIS does not account
			for jetting and flashing of LNG releases from failure
			of pressurized piping and equipment, and further
			states that the SOURCE5 model can no longer be
			used to calculate vapor gas dispersion zones for
			LNG facilities. ¹ Next, Exponent also states that this
			model is not physically accurate, mainly because it
			does not account for air entrainment in the
			evaporating gas and also because it does not
			adequately model heating of the vapor cloud
			within impoundments. ² Exponent likewise suggests
			using a CFD model for simulating LNG spills.
			As stated in item #1, a qualitative assessment was
			used by comparing CFD modeling results with
			available videos of similar cryogenic fluid releases

April 1, 2016 Response to Sanborn Head Technical Review Report

#	Page	Sanborn Head Remark	Smith & Burgess Response
			to determine that the release and vaporization
			nature was realistic. Our assertion that
			vaporization of the LNG jet predominantly occurs
			due to mixing in the air before reaching the ground
			is further confirmed from the LNG Source Term
			report issued by Health Safety Executive,
			particularly under section 2.3 Jets. Statements that
			side with our position include "For the case of an
			unobstructed jet a large fraction of the LNG may
			vaporize in the air before the liquid rains out and
			forms a pool, as shown in tests undertaken by
			Advantica and Shell" (Dr. Webber et al, HSE RR789
			Report). In our case, the jet is mechanically
			fragmented due to the very high velocities, and the
			sudden depressurization from moving from very
			high pressures to low pressures sends shock waves
			through the liquid, resulting in rapid vaporization of
			the liquid and the development of an aerosol spray.
			This spray in turn has a high surface area contact
			with the air, and in combination with the large
			amount of turbulence and mixing that occurs with
			the air, a large amount of heat transfer occurs, thus
			leading to the large amount of LNG vaporization
			seen in the CFD models. ³

Sincerely,

Jesse Brumbaugh, P.E. Process Consultant IV Smith & Burgess.

References

- Gale, John. Director, Office of Standards and Rulemaking. PHMSA Interpretation #PI-10-0017. PHMSA.dot.gov website, accessed April 1st, 2016. <u>http://phmsa.dot.gov/portal/site/PHMSA/menuitem.6f23687cf7b00b0f22e4c6962d9c8789/?vg</u> <u>nextoid=749a7428d17ae210VgnVCM1000001ecb7898RCRD&vgnextchannel=2b9b34d513f9541</u> <u>0VgnVCM100000d2c97898RCRD&vgnextfmt=print</u>
- Exponent Engineering and Scientific Consulting. LNG Spills & Vapor Dispersion. m.exponent.com website, accessed April 1st, 2016. <u>http://m.exponent.com/lng_spill_out_dispersion/</u>
- 3. Dr. DM Webber, Dr SE Gant, Dr MJ Ivings & SF Jagger, Health and Safety Laboratory. LNG source term models for hazard analysis. RR789 Research Report, 2010.